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The q-~r-algebra, i.e., the system of sets closed under complementation, countable 
disjoint unions, and containing the empty set, generated by the system of open 
balls coincides with the ~r-field of Borel sets in R" for n = 1, 2, and 3. A first 
step to extend the proof for n = 4, 5, 6, and 7 is indicated. 

Let X be an arbitrary nonempty set. A class ~ of subsets of the set X, 
containing the empty set, is said to be a q-~-algebra [a concrete quantum 
logic (Ptfik, Pulmannovfi, 1991, p. 2)] if it is closed with respect to complemen- 
tation and with respect to the union of any sequence of pairwise disjoint sets. 
I f  a or-algebra of sets is defined in the usual way as a class of sets containing 
the empty set, closed with respect to complementation and with respect to 
unions of arbitrary sequences of  sets, then, obviously, for an arbitrary class 
q~ of  subsets of X, the q-~r-algebra ~(q~) generated by q~ is contained in the 
G-algebra ,~(~) generated by q~. It is known (Neubrunn, 1970, Corollary 1) 
that if q~ is closed with respect to intersection, i.e., if A E q~, B ~ ~ implies 
A f3 B ~ ~,  then ~(qg) = M(q~). Therefore, for instance, if �9 is the class 
of  all (open) intervals on the real line, then ~ ( ~ )  = s~(~), where N ( ~ )  --- 

is the class of  Borel sets. For the same reason an analogous equality holds 
in the plane. In fact, if ~ is the class of  all (open) rectangles, then ~(%) 
coincides with the class ~ of  all Borel sets in the plane. However, if ~ is 
taken to be the set of all discs (the fact they are open, closed, or both is not 
essential), the question arises of whether 2g(~) contains all Borel sets, i.e., 
whether 2g(q~) = ~ .  More generally: Let ~ be the set o f  (n-dimensional) 
open balls in the Euclidean space R ~. Does ~s equal ~ ?  The question 
has been raised in much more general form (for Banach algebras) by Preiss. 
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However, it appeared to be nontrivial even in the above description, which was 
formulated independently by Neubrunn (1977). The problem was positively 
solved in Olej6ek (1988) for the 2-dimensional space and in Olej6ek (1995) 
for the 3-dimensional space. 

The method of the proof used in the 3-dimensional space (which can 
be applied also in the 2-dimensional space) is based on a cover of the unit 
cube by four disjoint sets, which are constructed using set operations on balls 
permitted within the q-or-algebra. The first step of the construction is to 
cover the unit cube by the system of four mutually orthogonal balls. The 
orthogonality is meant geometrically, i.e., two balls are called orthogonal if 
the square of the distance of their centers equals the sum of the squares of 
their radii. If a ball in an n-dimensional space is described by an (n + 1)- 
dimensional vector [&, x2 . . . . .  x,,; r], where xi is the ith coordinate of the 
center and r is the radius, then the unit cube in the 3-dimensional space with 
vertices [0, O, 0], [0, O, 1], [0, l, 0], [0, 1, 1], [1, O, 0], [1, O, 1], [1, l, 0], 
and [1, 1, l] is covered by the balls [0, O, l; 1], [0, l, O; 1], [1, O, O; 1], and 
[1, 1, 1; 1]. 

In this paper we try to find a method for construction of a similar cover 
in higher dimensions. In fact, for our purpose, the radii of the balls should 
not exceed one and not all balls in the cover have to intersect each other. 
Summarized, we try to find a finite cover of the unit cube in the n-dimensional 
space by closed balls with radii not exceeding one, which are in one of the 
following mutual positions: disjoint, tangential, or orthogonal. 

Due to symmetry of the unit cube we try to find a symmetrical cover. 
It can be expressed in a form reduced with respect to permutations. For 
example, in the 3-dimensional space the reduced system representing the 
cover is [0, 0, 1; 1], [1, 1, 1; 1]. All other balls of the cover can be obtained 
by permutations. 

In the 4-dimensional space the pattern from the 3-dimensional space 
can be applied, i.e., the cover is constructed by unit balls situated in the 
vertices with an odd sum of the coordinates. It consists of [0, 0, 0, 1; 1], [0, 
0, 1, 0; 1], [0, 1, 0, 0; 1], [1, 0, 0, 0; 1], [0, I, 1, 1; 1], [t, 0, 1, 1; 1], [1, 1, 
0, 1; 1], and [1, 1, 1, 0; 1]. In the reduced form the cover is represented by 
[0, 0, 0, 1; 1] and [0, 1, 1, 1; 1]. 

In the 5-dimensional space the situation is slightly more complicated. 
The system of unit balls with centers in the vertices with an odd sum of 

1 1 1 .  coordinates does not cover the unit cube. However, if the ball [�89 ~, 3, 3, 2, 
�89 is added, the cover is complete. In the reduced form it consists of [0, 0, 
0, 0, 1; 1], [0, 0, 1, 1, 1; 1], [1, 1, 1, 1, 1; 1], and [�89 �89 �89 �89 �89189 

The idea of construction of a cover can be extended to higher dimensions 
by means of generalized spherical (or circle) inversion inv determined by a 
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sphere (or circle) situated in the origin with radius .f2. It is a transformation 
defined by 

2 x  i 

Y i  - -  ~ = 1  x 2  
./ 

for i = 1, 2 . . . . .  n. It is easy to check that such a transformation transforms 
a ball [Xl, x2 . . . . .  x,; r] onto a ball [Yl, Y2 . . . . .  y,,; s], where 

2xi 2r 
- -  S - -  ~ I" 2 Yi ~ } , = , x ~ _ r  2 , Xj= 1 xy - 

Note three properties of the transformation inv: it is symmetric, orthogonality 
preserving, and an involution. In the 5-dimensional space the following pairs 
are mutual images: 

[0, 0, 0, 0, 1; 1] ~ hyperplane x5 = 1 

[0,0,  1, 1, 1; 1] ~ [0, 0, 1, 1, 1; 1] 

1. I [1, 1, 1, 1, 1; 1] I�89 

This explains why the overlapping balls are mutually orthogonal. 
Let us apply the similar construction in the 6-dimensional space. First 

we take the unit balls in the vertices with an odd sum of  coordinates. In the 
reduced version we obtain [0, 0, 0, 0, 0, 1; 1], [0, 0, 0, 1, 1, 1; 1], [0, 1, 1, 

1. I 1, 1, 1; 1]. Then we transform the third one to obtain [0, ~, �89 I, �89 f, ~]" 
However, the cover is still not complete. The reason is that the system is not 
symmetric within the reduced form. Namely the ball [�89 ~, �89 ~, ~, 1; �89 is 
missing. It transforms to itself in inv and, if included, the cover is complete. 

The algorithm applied can be generalized in the following way: 

(1) List the system of unit balls situated in the comers of  the unit cube 
with an odd sum of  coordinates. 

(2) Add all of their images in inv interfering with the unit cube. 
(3) Complete the system with respect to the symmetry. 
(4) Repeat steps 2 and 3 until nothing new is obtained. 

In 7-dimensional space this produces the following: 

(1) [0, 0, 0, 0, 0, 0, 1; 11, [0, 0, 0, 0, 1, 1, 1; 1], [0,0,  1, 1, 1, 1, 1; 1], 
[1, 1, 1, l, 1, 1, 1; 1]. 

(2 ) [0 ,  L1 L1 ~. 
' 2 '  1 I .  t 3 '  3'  3 '  3 '  3 ~ 3 '  3 '  3 j"  1 

1 , 
2, ~,�89177 ! l_ I ! _1 •177 

(3) [0, 7, ~, 2, ~, ~-, ~2, 2, 2, 2, z . . . . .  2- [-~, ~, X, ~, ~, ~, ~, 
2 , ~- 2 .  J [ ~ , ~ , ~ , 3 , 3 , - ~ , ~ , ~ ] "  3, 3,~,3,~-,~], 2 ~ 2 2 2 ~. 
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1 1 1 1. I (4-2) [41, �89 '2' 3' ~' ~' ~' ~]" 
(4-3) [�89 �89 �89 {, {, {, �88 �88 

And the system is closed. 
Unfortunately, the algorithm does not produce any finite cover  for dimen- 

sions n > 7 and the problem remains open. 
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